Tricks to Learning Multiplication Tables

Rhymes:
Here are some rhymes that will help you remember some of the remaining times tables.

- **8 x 8 = 64**
 - He ate and he ate and he sticks in the door, eight times eight is sixty-four.
 - Eight times eight fell on the floor, picked it up it's sixty four.

- **6 x 6 = 36**
 - Six times six equals thirty six (It rhymes)
 - Chicks, Chicks, dirty chicks - six times six is thirty six.

- **3 x 3 = 9**

Remember the FOURs as a Double-Double:

- Double-double the number you are multiplying four by. (Double it twice)
 - **4 x 3** (Double 3 twice)
 - 3 doubled is 6, 6 doubled is **12**
 - **4 x 6** (Double 6 twice)
 - 6 doubled is **12**, 12 doubled is **24**
 - Another way to figure the answer is double the answer you would get if you multiplied the number by 2.
 - **4 x 3** (Double the 2 x 3 answer)
 - The answer to **3 x 2** = **6**
 - Double the 6 to get **12**
 - **4 x 6** (Double the 2 x 6 answer)
 - The answer to **2 x 6** = **12**
 - Double the 12 to get **24**

Fingers – Nines Tables:

Step 1
Put your hands on the table in front of you.

Step 2
Your fingers represent the numbers 1 through 10.

Step 3
Curl under the FOURTH finger to represent 4 x 1.

Step 4
Learn the Nines
- Each finger to the left of the curled finger represents 10. Say 10, 20, 30.
- Each finger to the right of the curled finger represents one. Count 1, 2, 3, 4, 5, 6. (Or 31, 32, 33, 34, 35, 36)

Below are finger representations of each multiplication fact. If you see an animated hand above, you can click on the hands and see a large animated representation.

1 x 9
2 x 9
3 x 9
4 x 9
5 x 9
6 x 9
7 x 9
8 x 9

Materials researched, adapted and/or created by UF – MDTP for school, classroom, and home use.
More Multiplication Tricks:

<table>
<thead>
<tr>
<th>to multiply by</th>
<th>Trick</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>add the number to itself (example 2×9 = 9+9)</td>
</tr>
<tr>
<td>5</td>
<td>The last digit always goes 5,0,5,0,..., is always half of 10× (Example: 5×6 = half of 10×6 = half of 60 = 30) is half the number times 10 (Example: 5×6 = 10×3 = 30)</td>
</tr>
<tr>
<td>6</td>
<td>if you multiply 6 by an even number, they both end in the same digit. Example: 6×2=12, 6×4=24, 6×6=36, etc</td>
</tr>
<tr>
<td>9</td>
<td>is 10× the number minus the number. Example: 9×6 = 10×6 - 6 = 60-6 = 54 The last digit always goes 9,8,7,6,..</td>
</tr>
<tr>
<td>10</td>
<td>put a zero after it</td>
</tr>
<tr>
<td>11</td>
<td>up to 9×11: just repeat the digit (Example: 4×11 = 44) for 10×11 to 18×11: write the sum of the digits between the digits (Example: 15×11 = 1+(1+5)5 = 165) Note: this works for any two-digit number, but if the sum of the digits is more than 9, you will have to "carry the one".</td>
</tr>
<tr>
<td>12</td>
<td>is 10× plus 2×</td>
</tr>
</tbody>
</table>

And this gives me one more trick. If the numbers you are multiplying are separated by 2 (example 7 and 5), then multiply the number in the middle by itself and subtract one. See this:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5×5</td>
<td>=25 is just one bigger than 6×4 =24</td>
</tr>
<tr>
<td>6×6</td>
<td>=36 is just one bigger than 7×5 =35</td>
</tr>
<tr>
<td>7×7</td>
<td>=49 is just one bigger than 8×6 =48</td>
</tr>
<tr>
<td>8×8</td>
<td>=64 is just one bigger than 9×7 =63</td>
</tr>
<tr>
<td></td>
<td>etc ...</td>
</tr>
</tbody>
</table>